I. Basic Chemistry

A. Definition of concepts

1. Matter: anything that occupies space and has mass
 a. Mass: the amount of material in an object
 b. Weight: varies with gravity

2. Energy is the capacity to do work (put matter into motion)
 a. Kinetic energy versus potential energy
 1) Potential energy: stored energy
 2) Kinetic energy: energy in action
 b. Forms of energy
 1) Chemical: potential is stored in form of bonds between atoms and molecules
 2) Electrical: movement of charged particles
 3) Mechanical: energy that directly moves matter
 4) Radiant (electromagnetic): energy that travels in waves

B. Composition of matter: atoms and elements

1. Elements: unique substances
 a. Atoms: the building blocks of elements

2. Atomic structure: atoms are composed of even smaller particles
 a. Nucleus: located at the center of an atom
 1) Protons: positively charged particles
 2) Neutrons: no charge (neutral)
 b. Electrons: negatively charged particles
3. Identifying elements:

II. Molecules and Mixtures

A. Definitions

1. Molecule - Combination of 2 or more atoms held together by chemical bond

2. Compound - Combination of 2 or more different atoms held by chemical bond

B. Mixtures: 2 or more components physically mixed together

1. Types of mixtures
 a. Solutions: homogeneous mixture of 2 or more components

 1) Solvent: substance in greatest quantity
 2) Solute: substance present in lesser amount

 b. Colloids: heterogeneous mixtures that appear milky

 c. Suspensions: heterogeneous mixture with particles large enough to settle out if given time

2. Distinguishing mixtures from compounds

 a. Mixture: no chemical bonding between components

 b. Compound: chemical bonding occurs
III. Chemical bonds

A. Role of electrons in chemical bonding

1. **Electron shells:** *the space that electrons occupy*

 a. **Valence shell:** *outermost shell*

 b. **Octet rule:** *atoms (except hydrogen) want 8 electrons in valence shell*
B. Three types of chemical bonds

1. Ionic bonds occur by the transferring of electrons
 a. Anion: gains the electron
 b. Cation: loses the electron

2. Covalent bonds: occur by the sharing of electron pairs
 a. Single covalent bond
 b. Double covalent bond
 c. Triple covalent bond
d. Polar and nonpolar molecules
1) Nonpolar compounds: *are electrically balanced*

2) Polar compounds: *due to unequal electron sharing*

3. Hydrogen bond

IV. Chemical reactions

A. **Chemical equations**: *occur when forming or breaking chemical bonds*
 1. **Reactants**: *substances entering reactions*
 2. **Products**: *substance(s) formed by a chemical reaction*
 3. **Chemical equations describe these reactions**
B. Patterns of chemical reactions
 1. Synthesis reaction
 \[A + B \rightarrow AB \]
 2. Decomposition reaction
 \[AB \rightarrow A + B \]
 3. Exchange reaction
 \[AB + CD \rightarrow AD + BC \]
 4. Oxidation-Reduction (redox)
 a. Electron **donor** is oxidized
 \[\text{Na}^+ \text{ loses an electron to } \text{Cl}^- \]
 b. Electron **acceptor** is reduced
 \[\text{Cl}^- \text{ receives an electron from } \text{Na}^+ \]

C. Energy flow in chemical reactions
 1. Endergonic reactions: *absorb energy*
 2. Exergonic reactions: *release energy*

D. Factors influencing chemical reaction rates
 1. Temperature
 2. Concentration
 3. Particle size
 4. Catalysts: *increase rate of reactions*

V. Biochemistry
A. Inorganic compounds: *lack carbon*
 1. Water
 a. High heat capacity
 b. High heat of vaporization
 c. Polar/solvent properties
 d. Reactivity
e. Cushioning

2. Salts

3. Acids and bases
 a. Acid: *is a proton donor*
 b. Base: *is a proton acceptor*
 c. pH *is a measure of the proton (hydrogen ion) concentration in solution*

d. Neutralization
\[
\text{HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{HOH}
\]

B. Organic compounds: *all contain carbon*

1. Carbohydrates: *sugars and starches*
 a. Monosaccharides: *simple sugars*
 \[
 \begin{array}{c}
 \text{Glucose} \\
 \text{Fructose} \\
 \text{Galactose} \\
 \text{Deoxyribose} \\
 \text{Ribose}
 \end{array}
 \]
 b. Disaccharides: *double sugar*
 \[
 \begin{array}{c}
 \text{Sucrose} \\
 \text{Maltose} \\
 \text{Lactose}
 \end{array}
 \]
 c. Polysaccharides: *long chains of simple sugars*
 \[
 \begin{array}{c}
 \text{Glycogen}
 \end{array}
 \]
2. Lipids: *organics that do not dissolve in water*

a. **Neutral fats:** *triglycerides*

1) **Saturated fat:** *no double bonds between carbons*

![Triglyceride formation diagram]

Three fatty acid chains are bound to glycerol by dehydration synthesis.

Glycerol \[\text{H} - \text{C} - \text{O} - \text{H}\] \hfill \text{3 fatty acid chains}\hfill \text{Triglyceride, or neutral fat}\hfill \text{3 water molecules}

2) **Unsaturated fat:** *double bonds between carbons*

b. **Phospholipids:** *2 fatty acids plus a phosphate*

![“Typical” structure of a phospholipid molecule]

Two fatty acid chains and a phosphorus-containing group are attached to the glycerol backbone.

Example:
Phosphatidylcholine

Phosphorus-containing group (polar “head”) \[\text{CH}_3 \text{N} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{P} - \text{O}^-\] \hfill \text{Glycerol backbone} \hfill \text{2 fatty acid chains (nonpolar “tail”)}

Polar “head” \hfill \text{Nonpolar “tail”} (schematic phospholipid)

2. **Steroids:** *based on (built from) cholesterol*

![Cholesterol diagram]

Cholesterol (cholesterol is the basis for all steroids formed in the body)
3. Proteins: organics that contain C,H,O, plus Nitrogen
 a. Amino acids and the peptide bond
 1) Amino acids: building blocks for proteins
 a) 20 common types form all proteins
 2) Protein: a long chain of amino acids connected by covalent bond called a peptide bond

b. Levels of structure (see figure below)
 1) Primary: the linear sequence of amino acids
2) Secondary: primary twists on itself (due to H-bonds)
 a) Alpha helix: like a slinky toy

 b) Beta pleated sheet: like pleated ribbon

3) Tertiary: secondary folds on itself (H-bonds)

4) Quaternary: two or more polypeptides
5) Put it all together:

c. Fibrous proteins *(structural proteins)*
 1) Collagen
 2) Elastin

d. Globular proteins *(functional proteins)*
 1) Antibodies
 2) Hormones
 3) Enzymes

e. Protein denaturation: *Acid or heat (usually) will break hydrogen bonds causing structure to fall apart*

 1) Hydrogen bonds easily break
f. Enzymes and enzyme activity: biological catalysts

1) Very specific
2) Enzymes are not consumed
3) Enzymes are always a protein
4) Enzyme names usually end in the suffix: “ase”
5) Enzyme functions

4. Nucleic acids (DNA and RNA)
 a. Nucleotides: are building blocks of the nucleic acids

b. Two classes of nucleic acids: DNA and RNA
 1) DNA: is the genetic material (genes) of cell (A,T,G,C)
a) Blueprint for the body
b) Must not be damaged
c) Location: found in nucleus of the cell
d) DNA structure: double strand of nucleotides

2) RNA: contains A, U, G, C
 a) “photocopy” of the genes in DNA
 b) Location: synthesized in the nucleus, then transported to the cytoplasm
 c) Structure: single strand of nucleotides

5. Adenosine triphosphate (ATP)